
A Task Oriented View of Web Software
Visualization and Architecture

Laxmareddy.A1, M.Ganesan2, DR.E.Kannan3, M.Dhilsath Fathima4, M.S.Saravanan4

1,3Dept. of Computer Science and Engineering
2,4Dept.of Information Technology

Veltech Technical University, Chennai.

Abstract:Software visualization studies techniques and
methods for graphically representing various ways of
software. Its main purpose is to enhance, simplify and clarify
the representation a software engineer has of a computer
system. Software systems grow in size and complexity, so it
difficulties to understand and maintaining the software.In this
paper existing software visualization tools require too much
time for end user developers to learn and make effective used.
We are currently building a web software visualization
application that allows end-user that will provide create, view,
save, share visualizations and it will show the output like web
visualization like histograms etc..,
Keywords – Software Visualization, Information Visualization,
Software Comprehension, user – computer interaction and
visualization of words.

1. INTRODUCTION
Software visualization represents many things to many
people. Price presents the following general
Definition of software visualization
“Software visualization is 2D or3 D Visual Representation
of information about Software based on their structure with
modern user-computer interaction and computer graphics
technology to
Facilitate both the human understanding and effective use
of computer software.”
Or “Visualization Software is a range of Computer
Graphics and used to create graphical display and interfaces
for software programs”.
Web services describes the information, existing
software’s, and make them available internet to utilize
standard interfaces and protocols such as Simple Object
Access Protocol (SOAP), Extensible Markup Language
(XML) etc.., Web services provides a implementation way
of the loosely coupled Service-Oriented Architecture
(SOA) which is widely accepted by the information
industry as the future internet application architecture and
ease the process of application integrations. However, the
true potential of SOA and web services, in general, can be
realized when they are used for creating new services by
composing existing services together. In other words, when
a requested functionality cannot be offered by a single
service alone, some of the existing ones can be composed
to provide the same functionality. This process of web
service composition requires effective web service
semantic description language and tool to facilitate quick
and simple composition of web services, especially for end-
users.
However, we focus on the theory part of the composition
and formalization of web service. A lot of web service

semantic description languages have been made available
by many researchers and organizations to describe web
service compositions. However, little progress has been
made in the direction of describing the dynamic
transformations among atomic components of web service
compositions. Most of the research projects on web service
composition have led to the development of web service
semantic description language. Furthermore, these
technologies handle only part of the problem and not deal
with dynamic transformations. What is required to facilitate
web service composition is an ontology-based web service
semantic description language, which is capable to describe
dynamic transformations among components of web
service compositions, to ease the process of web service
composition, thereby reducing end-users’ demands
obtaining time, integration efforts and composition
expenses. This web service semantic description language
should be able to describe the dynamic transformations
among the components of a composite service in a manner.
The Other Part of this Abstract looks at existing software
visualization tools, characterizes web information
visualization tools and discusses implications.
The Web introduces a new model in which the client GUI,
based on HTML, is less functional and relies upon the data
or application servers for visualization traditionally will be
executed and that display in pixels.
1.1 Thin Client
The Web services in the world, the client are effectively
reduced to a browser viewer of information supported by a
server.
A true Web client is not capable of program execution
unless the executables are downloaded to the client as
either Plug-ins or Components. This client is normally
referred to as the “thin” client.
A thin client, by definition, have minimal software
requirements necessary to function as a user interface front-
end for a Web enabled application. Local data
manipulation, information drill-down technique,
Context sensitive menus, object picking and other
interactive user interface functions that traditionally have
been available on the client are now controlled by the
visualization server. In the “thin” client model, nearly all
functionality is delivered from the server side of the
visualization engine while the client performs very simple
display and querying functions.
The most appealing aspect of the “thin” visualization client
to information visualization users is that the overall cost of
software and maintenance can be dramatically reduced. The

Laxmareddy.A et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1219-1222

www.ijcsit.com 1219

“thin” client allows the application developers to eliminate
the notion of software distribution at the client level,
eliminate the notion of maintaining local software and
supporting multiple operating systems on remote clients.
The concept of thin client, the issue of client and server
data visualization will be standard Web browsers are
“static” and do not permit any visual data manipulation at
the client side. The user interaction is dependent upon the
network bandwidth. Partitioning the visualization process
between clients and servers is an effective way to distribute
the computing resources. The most flexible visualization
system allows the application developers to control the
visualization partitioning.

Figure1: Overview of Web Server Architecture is describes 2D graphics of
java 2D API Applet is transferred as to the client. A second applet
performs the calculation of profile code and the data should be selected.
The Horizontal and Vertical profiles are displayed and calculated as line
graphs based moments of the user. Both Profile Calculation and Graphics
rendering is done on the client – side. The 2D graphics was produced on
server – side by visualization in java2D API class. The advantage of local
data manipulation in client and improves the text quality in server
architecture.

2. EVALUATION OF X3D

X3D can support a range of 3D software visualization
techniques to determine if the technology is viable for use
in software visualization. More precisely we want to
experiment with automatically creating X3D software
visualizations, evaluate X3D’s animation and test the
integration capabilities, and analyze the performance
display capabilities of X3D.
The UML diagram replicates a similar example
by[McIntosh et al.2005].
Design: X3D is free open standards file format and run-
time architecture to represent, communicate, and deploy 3D
scenes and objects over the web using XML. The X3D
specification is comprised of components which contain
nodes (e.g. geometry) that are declared in a graph scene
that content can be created using some text editors, X3D
editors (e.g. X3D-Edit a Netbeans plug-in), digital content
creation tools (3DS Max, Maya, Blender), or XSLT
transformations. Here used some three of the main X3D
browser free version implementations including (in order of

preference): BS Contact VRML/X3D Player (6MB
download), Octaga Player (5MB), and Flux Player
(1.5MB). Each of these X3D browsers operate on Windows
and can be plugged into Mozilla Firefox and Microsoft
Internet Explorer or operate as stand alone. There is also
the Web3D Consortium’s stand-alone open source test-bed
implementation Xj3D (12MB). X3D content can be
rendered in either OpenGL or DirectX. Some of these X3D
browsers do not implement all of the X3D specification nor
do they make the Scene Access Interface (SAI) run-time
API available. This makes it hard for developers to create
consistent X3D software visualizations. Graphical
Capability: A rich set of graphical elements exist to create
high quality visual pictures required in visualization
software .the points and lines are can be implemented using
nodes from 2D. Shapes have size, height, radius, color, and
transparency fields, and can be animated to change in
software visualization. Shapes can be orientated in any
order (e.g. translated then rotated) and change position
during a software visualization. When nodes that are
connected in graph visualization are moved in a scene,
scripting is required to preserve the node-link relationships.

Figure2: X3D Routine Model

Visualization Techniques: There is no specific software
visualization component or library. We replicated a range
of software visualization techniques in X3D including
algorithm animations, 3D UML diagrams (class, package,
and sequence diagrams), documentation related
visualizations (source code, API Java doc , and video
visualizations), and execution trace visualizations (3D
compound shapes and 3D information visualization
metaphors). The data for our visualizations have been
encoded using three different approaches: in the X3D
scene, transformed from XML execution traces into X3D
geometry primitives are will be node prototype ways and
our visualizations can provide Java and C++ programs.
X3D can be used to represent program synchronization.
Multiple views can be accomplished by displaying the data
in different positions in the scene or integrating external
web pages.
2.1Visualizing Software Architecture
Visualizing Software Architectures As the size and
complexity of software systems increase the design
problems behind the algorithms and data structures of the
computation: Designing and specifying the overall system
structure emerges as a new kind of problem.
According to an IEEE standard [IEE00] “Architecture is
the fundamental organization of a system in those
components of relationships to everyone and to the
environment and the principles guiding its design and
evolution”.In some keywords are in this definition are
structure, environment and principle. As will become
apparent in this chapter, visualization so far has

Laxmareddy.A et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1219-1222

www.ijcsit.com 1220

concentrated mostly on the structure. Visualizations of
software architectures typically deal with the structure at
various levels of abstraction. At a higher level, the
architecture consists of components with ports, and ports
are linked through connectors.
When it comes to actually describing architecture, there are
many aspects, including its gross organization and global
control structure; protocols for communication,
synchronization, and data access; assignment of
functionality to design elements; physical distribution;
composition of design elements; scaling and performance;
and selection among design alternatives.
Most of these aspects have both functional and
nonfunctional properties and are often described in natural
language illustrated with diagrams. Breaking a system into
modules facilitates the design and development of software
systems. As David Parnas put it, “The existence of the
hierarchical structure assures us that we can ‘prune’ off the
upper levels of the tree and start a new tree on the old
trunk.”
It is widely accepted in software engineering that when one
is designing software architectures there should be low
coupling between modules and high cohesion within
modules. Coupling is “a measure of the strength of the
association established by a connection is between one
module to another module while the degree of connectivity
among the elements of a single module.
However, these original notions of coupling and cohesion
do not take the direction of the dependencies into account.
In particular, in relation to object oriented design, these
original ideas have been extended and new principles and
related metrics have been devised to guide the design of
software systems. The first part of this chapter is about
types of diagrams that show the structure of architecture.
Then we shall look at some approaches that can be used to
extract and visualize architectural information from the
source code of a system. Finally, the use of 3D and
dynamic software architecture visualization is discussed.
2.2Some Familiar Architecture
We first look at some diagrams of some basic architecture
widely used in software systems:
Pipes and filters: Filters receive a stream of input data and
produce a stream of output data. Pipes pass the output data
of one filter as input data to the next one. The Info pipes
notation extends the pipe metaphor with buffers, pumps,
split and merge tees, etc. to design distributed streaming
applications.
Layered Systems: The functionality of a system is
organized into several layers. In a purely layered system,
the functionality of one layer is implemented by the
functionality provided by the layer directly below. Very
often, layered systems also allow access to some of the
other layers below. One can use both horizontal layers and
an onion model. In the first case all layers have the same
size, whereas the onion model emphasizes that the core is
smaller than the outer layers.
Blackboards: In the blackboard architecture, there are
multiple units that share data through a blackboard.
Typically, the units can read and write to the blackboard.
So for example, the blackboard might contain both tasks to
be computed and results of previously computed tasks.

A Web search with a search engine such Google for images
related to the term software architecture reveals a wealth of
different styles for drawing architecture diagrams. Most of
these use ad hoc visual representations, and the semantics
of the colors, nodes, icons, lines, and arrows is often
unclear. To remedy this situation somewhat, one can follow
general rules for the use of connectors, icons, text, color,
etc. On the basis of a study of software architecture
diagrams found on the Web. Compiled a list of guidelines
for drawing architecture diagrams but when it comes to
building large systems with many developers, a common
understanding of the architecture diagrams is key, and
standardized graphical notations such as UML promise to
be the solution.

3.WEB SERVICE FLOW PATTERNS
Web services are currently praised as the solution to the
development of distributed applications by allowing one to
compose services in a standardized .As more Web services
become available, applications get larger and more
complex. The Web Services Navigator is a visualization
tool for understanding, debugging and analyzing the
performance of these complex applications. To this end,
execution traces in the form of Web service Transactions
are collected. A Web service transaction is a tree of
messages and invocations that is initiated by a client. Thus,
a transaction captures the flow of one service invoking one
or more other services, which in turn may invoke other
services and so on.

Figure3: Traces of several web service transactions

Transactions can be visualized using a sequence diagram-
like representation, where vertical lines represent the
different services involved. To test or tune the performance
of a complex Web service, one typically needs to collect a
large number of transactions. Simply drawing all
transactions in a single diagram does not reveal any new
insight other than revealing the fact that it looks like a
mess. By partitioning the transactions into groups of
isomorphic tree shapes, and then further subdividing these
groups based on matching node and edge at Visual Testing.

Laxmareddy.A et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1219-1222

www.ijcsit.com 1221

Figure4: Flow patterns computed for many transactions

3.1Web Software Visualization
In a recent survey based on questionnaires completed by
111 researchers from software maintenance, reengineering
and reverse engineering, 40% found software
Visualization absolutely necessary for their work and
another 42% found it important but not critical. The
majority of the researchers are primarily using or
integrating existing software visualizations tools developed
by others (33%).
We want software visualization to be an easy task for end-
users without the need for downloading and installing
separate applications. However, it is not clear what a good
software visualization system looks like. We believe the
web is an excellent platform for creating a software
visualization application. Web based software visualization
allows end-users to independently create, view, save, and
share visualizations with others. We have explored the 43
software visualization tools
Listed by Diehl and found that only one of the tools was
web-based, the SHriMP2 application for visualizing

dependencies in hierarchically structured data as nested
graphs.
The rest of the applications require a separate download,
plug-in to an IDE such as Eclipse, or are proprietary
software. Since there is a lack of freely available web
software visualization tools we have decided to explore
existing information visualization web tools. We want to
see if any of these tools have useful features that we could
incorporate into our software corpus visualization project.
There are some implications for our research. We need to
determine what visualization types to implement.
Depending on the visualization type different methods will
be required to parse the source code. We intend to make
our software visualization system public facing so we will
need to consider how we handle
Proprietary software and how the system scales once there
are lots of software uploaded and much visualization
created. Once our application is in production we intend to
conduct user evaluations (user testing and interviews) to
see how effective the system is.
In summary, there is a lack of easy to use web software
visualization systems. We are working towards a web
based application that will help end-users to upload their
Java software applications, create visualizations, and share
their visualizations with other users.

REFERENCES
[1] Towards End-User Web Software Visualization 2008 IEEE

Symposium on Visual Languages and Human-Centric Computing
(VL/HCC).

[2] Anslow.Evaluating X3D for use in software visualization. Master’s
thesis, VUW, 2007

[3] Information Visualization on the Web Mikael Jem Advanced Visual
Systems

15 Blokken, DK 3460, Birkeroed, Denmark and R. Koschke. Software
visualization for reverse engineering.In Revised Lectures on
Software Visualization, pages 138–150. Springer Verlag, 2002.

[4] Web Software Visualization Using Extensible 3D (X3D)
GraphicsCraigAnslow, James Noble, Stuart Marshall_Victoria
University of Wellington, New Zealand Robert Biddle†Carleton
University, Canada

TEXTBOOK
[5] Stephan Diehl – Software Visualization Visualizing the Structure,

Behaviour, and Evolution of Software .Springer

LINKS
[6] http://en.wikipedia.org/wiki/Software_visualization
[7] http://en.wikipedia.org/wiki/Visualization_software

Laxmareddy.A et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1219-1222

www.ijcsit.com 1222

